Deep Reinforcement Learning for Dexterous Manipulation with Concept Networks

نویسندگان

  • Aditya Gudimella
  • Ross Story
  • Matineh Shaker
  • Ruofan Kong
  • Matthew Brown
  • Victor Shnayder
  • Marcos Campos
چکیده

Deep reinforcement learning yields great results for a large array of problems, but models are generally retrained anew for each new problem to be solved. Prior learning and knowledge are difficult to incorporate when training new models, requiring increasingly longer training as problems become more complex. This is especially problematic for problems with sparse rewards. We provide a solution to these problems by introducing Concept Network Reinforcement Learning (CNRL), a framework which allows us to decompose problems using a multi-level hierarchy. Concepts in a concept network are reusable, and flexible enough to encapsulate feature extractors, skills, or other concept networks. With this hierarchical learning approach, deep reinforcement learning can be used to solve complex tasks in a modular way, through problem decomposition. We demonstrate the strength of CNRL by training a model to grasp a rectangular prism and precisely stack it on top of a cube using a gripper on a Kinova JACO arm, simulated in MuJoCo. Our experiments show that our use of hierarchy results in a 45x reduction in environment interactions compared to the state-of-the-art on this task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations

Dexterous multi-fingered hands are extremely versatile and provide a generic way to perform multiple tasks in human-centric environments. However, effectively controlling them remains challenging due to their high dimensionality and large number of potential contacts. Deep reinforcement learning (DRL) provides a model-agnostic approach to control complex dynamical systems, but has not been show...

متن کامل

Data-efficient Deep Reinforcement Learning for Dexterous Manipulation

Deep learning and reinforcement learning methods have recently been used to solve a variety of problems in continuous control domains. An obvious application of these techniques is dexterous manipulation tasks in robotics which are difficult to solve using traditional control theory or hand-engineered approaches. One example of such a task is to grasp an object and precisely stack it on another...

متن کامل

Learning Dexterous Manipulation for a Soft Robotic Hand from Human Demonstration

Dexterous multi-fingered hands can accomplish fine manipulation behaviors that are infeasible with simple robotic grippers. However, sophisticated multi-fingered hands are often expensive and fragile. Low-cost soft hands offer an appealing alternative to more conventional devices, but present considerable challenges in sensing and actuation, making them difficult to apply to more complex manipu...

متن کامل

Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

Deep learning classifiers are known to be inherently vulnerable to manipulation by intentionally perturbed inputs, named adversarial examples. In this work, we establish that reinforcement learning techniques based on Deep Q-Networks (DQNs) are also vulnerable to adversarial input perturbations, and verify the transferability of adversarial examples across different DQN models. Furthermore, we ...

متن کامل

Deep Reinforcement Learning for Robotic Manipulation - The state of the art

The focus of this work is to enumerate the various approaches and algorithms that center around application of reinforcement learning in robotic manipulation tasks. Earlier methods utilized specialized policy representations and human demonstrations to constrict the policy. Such methods worked well with continuous state and policy space of robots but failed to come up with generalized policies....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.06977  شماره 

صفحات  -

تاریخ انتشار 2017